IFN-gamma-inducible protein-10 attenuates bleomycin-induced pulmonary fibrosis via inhibition of angiogenesis.

نویسندگان

  • M P Keane
  • J A Belperio
  • D A Arenberg
  • M D Burdick
  • Z J Xu
  • Y Y Xue
  • R M Strieter
چکیده

Few studies have addressed the importance of vascular remodeling in the lung during the development of bleomycin-induced pulmonary fibrosis (BPF). For fibroplasia and deposition of extracellular matrix to occur, there must be a geometric increase in neovascularization. We hypothesized that net angiogenesis during the pathogenesis of fibroplasia and deposition of extracellular matrix during BPF are dependent in part on a relative deficiency of the angiostatic CXC chemokine, IFN-gamma-inducible protein-10 (IP-10). To test this hypothesis, we measured IP-10 by specific ELISA in whole lung homogenates in either bleomycin-treated or control mice and correlated these levels with lung hydroxyproline. We found that lung tissue from mice treated with bleomycin, compared with that from saline-treated controls, demonstrated a decrease in the presence of IP-10 that was correlated to a greater angiogenic response and total lung hydroxyproline content. Systemic administration of IP-10 significantly reduced BPF without any alteration in lung lymphocyte or NK cell populations. This was also paralleled by a reduction in angiogenesis. Furthermore, IP-10 had no direct effect on isolated pulmonary fibroblasts. These results demonstrate that the angiostatic CXC chemokine, IP-10, inhibits fibroplasia and deposition of extracellular matrix by regulating angiogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beneficial effects of N-acetylcysteine on protease-antiprotease balance in attenuating bleomycin-induced pulmonary fibrosis in rats

Objective(s): The role of N-acetylcysteine (NAC) as an anti-oxidant in attenuating bleomycin-induced pulmonary fibrosis has been reported. However, its effect on parenchymal remodeling via regulating the protease-antiprotease balance is not fully defined. Therefore, the present study was designed to explore the possible role of matrix metalloproteinases (MMP), tissue i...

متن کامل

IL-12 attenuates bleomycin-induced pulmonary fibrosis.

Interleukin (IL)-12 is a potent inducer of interferon (IFN)-gamma. We postulated that IL-12 would attenuate bleomycin-induced pulmonary fibrosis. To test this hypothesis, we administered IL-12 or murine serum albumin to bleomycin-treated mice by daily intraperitoneal injection until day 12. Mice treated with IL-12 demonstrated decreased hydroxyproline levels compared with control treated mice. ...

متن کامل

Treatment with alpha-galactosylceramide attenuates the development of bleomycin-induced pulmonary fibrosis.

Pulmonary fibrosis is an end-stage disorder for which efficacious therapeutic options are not readily available. Although its pathogenesis is poorly understood, pulmonary fibrosis occurs as a result of various inflammations. NKT cells modulate inflammation because of their ability to produce large amounts of cytokines by stimulation with their glycolipid ligand. In the present study, we investi...

متن کامل

Atorvastatin Attenuates Bleomycin-Induced Pulmonary Fibrosis via Suppressing iNOS Expression and the CTGF (CCN2)/ERK Signaling Pathway

Pulmonary fibrosis is a progressive and fatal lung disorder with high mortality rate. To date, despite the fact that extensive research trials are ongoing, pulmonary fibrosis continues to have a poor response to available medical therapy. Statins, 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, known for its broad pharmacological activities, remains a remedy against multiple disease...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of immunology

دوره 163 10  شماره 

صفحات  -

تاریخ انتشار 1999